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A method is developed based on the use of a model kinetic equation with a shock frequency 
w = v / l  (l is the mean length of the free flight path; v is the modulus of the molecular  veloc-  
ity). The method is tested on severa l  c lass ical  problems.  

1. Description of Method. We shall {lse as basis the model kinetic equation 

o/ l 
v ~ = ~ (/o --  f) (1.1) 

Here v is the molecular  velocity; ~--l(v) is the shock frequency, depending on the velocity; f o  is the 
local-equil ibrium distribution function. In the considerat ion of the internal flows of a ra re f ied  gas, in the 
major i ty  of cases  we can limit ourse lves  within the f ramework  of a l inear approximation (i.e., with small  
Mach numbers and small  t empera ture  gradients).  

Therefore,  we take 
p~ 

We divide all the par t ic les  into two so r t s :  p r i m a r y  par t ic les  which have just flown away from the wall 
and have not undergone even one collision; secondary  par t ic les ,  which have undergone at leas t  one collision. 
We write the kinetic equations for each so r t  separa te ly :  

v: = "7- (/o~- f2) Jr -7-I01 or u /' (1.2) 

Here f l  and f2 a re  respect ive ly  the distribution functions of the p r i m a r y  and secondary  par t i c les ;  
f01 and f02 are  local-equil ibrium functions normalized respect ive ly  for the densit ies of the number of p r i -  
m a r y  and secondary  par t ic les .  

The necess i ty  for such a separat ion is a resul t  of the following: with collisions between secondary  
par t ic les  the momentum and the energy of any given element of the volume are retained; with collisions 
between p r i m a r y  and secondary  par t ic les ,  in each element of the volume, there  appears  a momentum and 
an energy brought  in by the par t ic le  f rom that point of the surface f rom which it was emitted. Therefore,  
at each point of its volume a gas consist ing of secondary  par t ic les  has sources  of energy and momentum 
formed by the flows of p r i m a r y  par t ic les  at the given point. 

Let us make the form of the function T (v) definite. We take T (v) = l / v .  Here l is the mean length 
of the free-flight path; v is the molecular  velocity. (Various means for selecting ~- (v) are  discussed in [1].) 

We write the laws of conservat ion for the secondary  par t ic les :  

2 

3 ]/--~ IV~v~ Vo = (1.4) 
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Idpf~vv2=IdP]~ ~f-~ Ntvo V'-~ (1.5) 

With the given se lec t ion  of T (v), Eqs, (1.2) can be rewr i t ten  as 

fl (UV, ro -I- us) = 11 (gv, ro) e -~ (1.6) 
s 

,r (Uv, rs + xs) : 1~ (uv, to)/-sll + f ds'e-(s'-s)ll lo (xv, r o + us') (1.7) 
o 

Here ~ = v / v ,  f0  = fol  + f02; r s is the radius  vec tor  of a point on the sur face ;  f s  is the dis tr ibut ion function 
of the pa r t i c l e s  flying away f rom the sur face ;  we a s sume  that  this distr ibution is local ly  Maxwellian. 

We now fix the point r = r s + ~ s  and substi tute express ion  (1.7), consecut ively  into the equations of 
conserva t ion  (1.3)- (1.5): 

2 1 ~ . ,  e -R'l f 2 . ,  ' 3 •  ( 1 .8 )  
if  ~. N2v0---- -y.~ar 4--~-h-~{-~-~VVo~- 

8 t ( ~ s ,  e - R i l  ( 8 " , ~ ,  . N v o  2 = <Ju - - 2 - - j  (1.9) 
3~ Q~~ - ~ r  ~--~r-'~ 13-V~ -~~ 

Here  
r - - r  r 

U=lr_r,------T, R = J r - r ' l ,  Q = N u  

Equations (1.8)-(1.10) exp res s  the density,  the flows, and the p r e s s u r e  of the secondary  pa r t i c l e s  in 
t e r m s  of the total  values of these  quantit ies over  the whole volume. We now find the contr ibution of the 
p r i m a r y  pa r t i c l e s .  In tegra t ing Eq. (1.6) over  the space  of the momenta  at the point r =  r s + ~ S ,  we find 

N l(r) = ~ e/S'z e-R/z f 4 u~ - ~ - [ N ~  + - - f~ -  N, ~o--TJ (1.11) 

~-~/' /'__m 3u(N,u~u)} Q,(r) = - ~ ds'u ~ n .  t r v~ + (1.12) 

~o ~ cc , e-R/~ { ~o2 8 } 
N~-~-  = - ~ dS u 4-~nT ~ ,  ~ - -  + 3--#-g-v0~ (N~,u) (1.13) 

Here u s is the veloci ty  of the wall; Vos = (2 0 s/m)1/2; 0 s is the t e m p e r a t u r e  of the wall.  

The total  density,  flows, and p r e s s u r e  a r e  e x p r e s s e d  by the fo rmulas  

t { ' , ,  e - l l / l  f .  . - 

_ _ + " 4  o . ,4>  

dr' ~ l 3UVo (uQ)-P----g~ u---~--j'~ I~ { - - ' ~  NsVo~Z + 

- - F  7 Vo~ (N=u,z) (1.16) --~-r- INs + 
J 

The p a r a m e t e r s  N s and Qs a re  de te rmined  f rom the condition of nonflow 

Q (r D n (r0) = 0 

The s y s t e m  of equations (1.14)-(1.17) is a c losed s y s t e m  of in tegral  equations,  mfffictent in pr incipal :  
for  the solution of any given p rob lem involving the flows of a r a r e f i ed  gas.  

We cons ider  below a number  of p rob l ems  whose soIutions a re  well known; we shall  use  these as ex-  
amples  to demons t r a t e  the c o r r e c t n e s s  and the ve ry  high eff iciency of the method developed here .  

2. Couette Flow. Let  there  be two infinite flat p la tes ,  moving pa ra l l e l  one to the other  at Velocities 
of *u  s. The dis tance between the pla tes  is equal to 2a .  There  is sought the flow densi ty  of the pa r t i c l e s  
along the axis of the p la tes  (Fig. 1). 
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where 

In this case  also, the integral  equation (1.15) for the flow can be t r ans fo rmed  to the following fo rm:  

-g-1 

Q (s) = ] 
--I 

cQ 

K (s, s') Q (s') ds' + -~-3 Nsu~ f dt ( t  - -  -7t ) e_Xt sh ~.ts 
J t  ~ \ 
1 

r ')e-',,,-,', K(s , s ' )  = - y - y  -7- I -- y 

Here s = z/a. The parameter I = a~ l = Kn -I characterizes the degree of rarefaction. The integral 

equation (2.1) was solved numerically over a wide range of values of I from 10 -3 to 5. Typical flow profiles 

are shown in Fig. 1, where the values of I = 0.01, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, ~ correspond to curves 1-8. 

The limiting cases can be investigated analytically. Thus, with X - -  0, we have Q(s) - 0. With X ~ ~, 

we use the asymptotic formula 

S dt 2 1 t Ozf lira f (s') ds' __e-Zt l~-r  (2.2) 
~-.~ t" =-~-" § n+z  U-- -67  ~} --1 1 

gradient  applied along the X axis. 
+ ,  

Q* (~) = y K (s, ~') Q~ (r -- 
--1 

Here 

Applying (2.2) to Eq. (2.1), with X - -  ~, we obtain 8 2 U / a S  2 = 0, with slipping conditions at theboundary:  i 

3 ou 
u (t) = u~ -- -g- l 0~ (2.3) 

The solutions of Eq. (2.3) have l inear profi les  passing through the origin of coordinates .  A compar i -  
son between conditions (2.3) and Fig. 1 shows that a l ready at X = 5 the solution of integral  equation (2.1)" 
coincides with its continuous asymptotic  curve.  

The resul ts  set  forth here  are  in good agreement  with known data (see, for  example, [2]). 

3. Poiseuil le Flow. We consider  an i so thermal f low,ar i s ing  under the effect of a constant  p r e s s u r e  
In this case,  Eq. (1.15) is t r ans formed  to the form 

oo 

9n X I -- e -xt ch)~ts (3.1) 
8 ( ~, \ 3  l , ' 

Q, = 2.__~u kp = a OP 
vo ' P Ox 

This integral  equation was solved numerical ly  f rom X = 10 -3 to X = 5.0. Figure 2 shows c h a r a c t e r i s -  
tic flow profi les  for values of X = 0.01, 0.1, 0.5, 1~ 3.0, 5.0 (curves 1-6, respect ively) .  A compar ison  with 
existing data [2] shows a lmost  total agreement .  
known Poiseuil le equation 

Oz ~ 

With X ~ r f rom Eq. (3.1) there can be obtained the well-  

t OP 

~x (3.2) 

with slipping conditions at the boundary:  

3 V~ kp 
u (1) = --7-- v0 7~ 

Under these circumstances 

3 i Ou 
8 k 0s (1) (3.3) 

the v i scos i ty  coefficient is equal to 

~1 = ~ pvol (3.4) 
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An important  special  charac te r i s t ic  of plane Poiseuit le flow is the existence of a minimum of the mass  
flow rate  at ce r ta in  values of k (the Knudsen paradox). Figure 3 shows the mass  flow ra te  curve obtained by 
the p resen t  authors.  At X - -0  it has a logari thmic singularity,  at X ~ ~ it r i ses  l inearly, and it attains a 
minimum a t  X = 0.36-0.4. In [3] a value of k = 0.42-0.55 is given, Close values were obtained in recent ly  
conducted e x p e r i m e n t s  [4]. 

4. Heat Transfer  between Flat Plates.  We shall f i rs t  calculate the tempera ture  profile between infi- 
nite flat plates,  of which the upper has a tempera ture  of 0+, and the lower a t empera ture  of 0_. Integral 
equation (1.16) is t r ans formed  to the form 

+ 1  oo 

o (,> -_ ,)o (,,>,,, + .! { o,, + o, ,,,,} 
-1 1 (4.1) 

c~ 

I 

The resul t s  of a numerical  calculation of 0 (s) a r e  given in Fig. 4. Curves 1-10 correspond to the fol- 
lowing pai rs  of values:  X, 8 = 0.01, 0.5; 0.01, 1.0; 0.1, 0,5; 0.1, 1.0; 0.5, 0.5; 1.0, 0.5; 5.0, 0.5; 0.5, 1.0; 1.0, 
1.0; 5.0, 1 .0 ;6  = ( 0 + - 0 _ ) / ( Q + * Q _ ) .  

The heat flux is expressed  in t e rms  of the tempera ture  in the following manner :  

J (s) = 4 �9 o O'l, (s ' )  at  -xtus-s,)  
(2urn)'/' J ds' 0--7-- - g - e  , (4.2) 

- - 1  1 

A t  the  f r e e - m o l e c u l a r  l i m i t  t h i s  e x p r e s s i o n  g o e s  o v e r  i n to  

J (s) = 2 (o.,. ' / ,- o '/9 
(2rim)% - . 

At the continuous l imit  
walls: 

(4.3) 

the tempera ture  profi les are  l inear with a tempera ture  discontinuity at the 

t . O 0  
0 (t) = 0+ -- -5- t --dT-z (i). (4.4) 

At X ~ ~,  formula (4.2) goes over into the thermal-conductivity equation with the thermal-conductivi ty 
coefficient 

2 
k r  = - - ~  pv0l (4.5) 

Disposing of explicit expressions for the viscosi ty  and thermal-conduct ivi ty  coefficients,  we can find 
the Prandt l  number 

Pr =- cv~l 2 kT = - ~  o 

This value coincides with the Prandt l  number for the Boltzmann equation. 

Thus, the proposed method ensures  a c o r r e c t  limiting t ransi t ion both to f ree-molecular  and to con- 
tinuous flows. At the same time, without imposing any sor t  of res t r ic t ions  on the geometry  of the region 
and the dimensionality of the problem, it permi ts  a very  economical  descr ipt ion of flows with a rb i t r a ry  
Knudsen numbers.  
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